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Abstract

Understanding spatial and temporal variation in net primary production (NPP), the amount of carbon fixed into biomass by vegetation, is a

central goal of ecosystem ecologists. Optical remote sensing techniques can help address this need by providing accurate, consistent, and

reliable approximations of photosynthetic activity at large scales. However, converting photosynthetic activity into NPP requires estimates of

light-use efficiency, which has been shown to vary among vegetation types. In this study, we compare remotely sensed estimates of absorbed

photosynthetically active radiation with ground-based NPP estimates to determine appropriate light-use efficiency values for grasslands and

croplands. We contrast the performance of models with and without information about vegetation type and light-use efficiency

downregulation due to unfavorable environmental conditions. Our results suggest that: 1) current models may include overestimates of

grassland light-use efficiency; 2) including vegetation information in light-use efficiency calculations causes a dramatically better fit between

ground-based and remotely sensed estimates of primary production; and 3) incorporating environmental downregulation to light-use

efficiency yields only minor improvements, which may be a result specific to annual estimates in grassland and cropland systems. In addition,

this study presents a regional dataset of ground-based primary production estimates that may prove useful for future studies.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Remotely sensed spectral reflectance data are unique in

their ability to provide consistent large-scale observations

that can be related to ecological phenomena (Roughgarden

et al., 1991), including net primary productivity (NPP). NPP

is related to plant photosynthetic activity and can be

estimated from remotely sensed imagery by observing

patterns of light absorption (Sellers et al., 1995). Conse-
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quently, remote sensing techniques that quantify light

absorption have emerged as the primary source of large-

scale NPP information, and constitute one of the few actual

observations of carbon cycling processes at regional or

global extents. Monteith (1972, 1977) developed methods

for estimating plant productivity from observations of

absorbed photosynthetically active radiation (APAR) and

estimates of light-use efficiency (LUE):

NPP ¼ APAR � LUE ð1Þ

where NPP is net primary productivity (gC m�2 time�1

typically aboveground), APAR is absorbed photosyntheti-

cally active radiation (MJ m�2 time�1) and LUE is light-use

efficiency (gC MJ�1).
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Fig. 1. Counties within the U.S. Central Great Plains region used in this

study, their percent cropped area, and temperature and precipitation

gradients.
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Regional and global scale NPP studies require accurate

estimates of both APAR and LUE. Although spatial and

temporal variations in APAR can be consistently quantified

through remote sensing techniques (Sellers et al., 1992),

photosynthetic efficiency is not yet generally assessable by

remote sensing (but see Barton & North, 2001 and Boegh et

al., 2002). LUE is known to exhibit both spatial variation

across vegetation types (Gower et al., 1999; Turner et al.,

2002) and temporal variation at individual sites (Campbell

et al., 2001; Nouvellon et al., 2000). Consequently,

generating valid representations of LUE is especially

difficult in regions with substantial cropping because native

vegetation and crops often have different LUE values

(Gower et al., 1999), creating spatial heterogeneity not

captured by the remotely sensed reflectance observations. A

common approach is to incorporate information about

vegetation type and/or temperature/water availability con-

ditions in LUE calculation (e.g., Ruimy et al., 1994). One

such technique is the Carnegie–Ames–Stanford Approach

(CASA) model for estimating NPP from remote sensing

data. CASA is a widely recognized NPP model that

downregulates photosynthetic efficiency in response to

short-term adverse temperatures or dry soil conditions

(Field et al., 1995; Potter et al., 1993).

Our objectives in this study are: 1) to characterize the

discrepancies between NPP estimates from the existing

CASA model (with existing LUE values) and ground-based

data; 2) to address these discrepancies by inverting Eq. (1) to

estimate separate grassland and cropland LUE values for use

in remote sensing NPP models; and 3) to use these results to

quantify the importance of the environmental and crop type

LUE modifications in grassland and cropland systems.

Ground-based NPP was computed for cropland from harvest

information reported by the USDA, and for native grasslands

from information in the State soil geographic database. We

explored native grassland LUE using C3 and C4 LUE

reported by Lobell et al. (2002), but also independently

derived LUE for all three vegetation types.

A recent study by Lobell et al. (2002) quantified cropland

LUE for individual US counties by utilizing the temporal

dynamics of satellite-derived APAR (from CASA) together

with NPP estimated from USDA harvest statistics. Lobell et

al. (2002) reported LUE values by county, and concluded

that cultivated areas have different LUE than native

vegetation and that those estimates can be used to improve

large-scale estimates of NPP derived from remote sensing.

Our study differs in both objectives and methods from

Lobell et al. (2002), and therefore provides additional

confidence in the derivation of crop LUE. The major

methodological difference is that we analyzed cropland

LUE and NPP together with that of native ecosystems since

our study region, the Great Plains, includes a mixture of

native grasslands and croplands. By contrast, Lobell et al.

included only cultivated pixels to estimate LUE. By

comparing time series information about cropland produc-

tion with remotely sensed light absorption information for
multiple sites, Lobell et al. estimated spatial variability in

LUE. In contrast, we incorporated native grassland produc-

tion and used long-term mean variables of plant productivity

and light absorption to compute one LUE value for the

entire region. Other differences in methods include the

assumption by Lobell et al. that belowground productivity is

a constant proportion of aboveground productivity regard-

less of the crop, whereas we calculated belowground

productivity as a crop-dependent flexible proportion of

aboveground productivity based on published carbon

allocation ratios. Comparison of the results from these two

approaches can provide valuable validation of the resultant

LUE estimates.
2. Methods

2.1. Study site

We conducted this study in the U.S. Great Plains (Fig. 1),

a region ideal for this study because it contains a wide range

of cultivation intensities, and native vegetation is primarily

grassland. Land use is dominated by grazed native grassland

and cropland. Precipitation occurs primarily in the summer

and mean annual precipitation ranges from less than 400

mm in the west to approximately 1000 mm in the east. Mean

annual temperature ranges from 3 to 21 -C from north to

south (Lauenroth & Burke, 1995).

Counties were included in this study based on availabil-

ity of range site production data from the USDA Natural

Resource Conservation Service’s (NRCS) STATSGO data-



J.B. Bradford et al. / Remote Sensing of Environment 96 (2005) 246–255248
base (SCS, 1976) and vegetation type as defined by Kuchler

(1964). STATSGO provides production values only for

states to the west of and including the Dakotas, Nebraska,

Kansas, Oklahoma and Texas. Within this area we included

the 630 counties that historically contained at least 70% of

the following vegetation types: northern mixed grass prairie,

shortgrass prairie, tallgrass prairie, tallgrass savanna, south-

ern mixed grass prairie, desert savanna and floodplain

forests. We collected USDA harvest and remote sensing

data for the years 1990–1998.

2.2. Ground-based estimates of NPP

To quantify county-level productivity from ground-based

measurements, we assumed all non-cultivated areas were

native grassland, and considered each county as a mixture of

cultivated areas and native grasslands.

2.2.1. Grasslands

In native grassland areas, we utilized data from the

STATSGO database to compute aboveground net primary

productivity (ANPP). NRCS divided each western state into

range sites (several sites per county), and measured range site

production, defined as ANPP (Joyce et al., 1986).We overlaid

a county map over the range site production map and

calculated the area-weighted average range site production

value for each county. Estimating native belowground net

primary productivity (BNPP) is more difficult than estimating

ANPP (Lauenroth, 2000). Consequently, no empirical data-

sets for regional BNPP exist. However, Gill et al. (2002)

reasoned that BNPP can be estimated as a function of

maximum yearly belowground biomass (BGB), maximum

proportion of BGB that is alive during the year (liveBGB/

BGB), and root turnover (T) according to the equation:

BNPP ¼ BGB
liveBGB

BGB

��
T : ð2Þ

Gill et al. (2002) used these relationships along with

pairs of BNPP and ANPP from published studies to

generate equations to predict BNPP from ANPP and

temperature in grasslands. Their results indicate that

BGB and liveBGB/BGB can be estimated from above-

ground biomass (AGBIO: roughly equivalent to ANPP and

estimated from ANPP) as:

BGB ¼ 79AGBIO � 33:3 MATþ 10ð Þ þ 1289

R2 ¼ 0:55 n ¼ 52 ð3Þ

liveBGB

BGB
¼ 0:6: ð4Þ

According to Gill and Jackson (2000), root turnover can

be estimated from mean annual temperature (MAT) as

T ¼ 0:2884e0:046�MAT R2 ¼ 0:48 n ¼ 71 ð5Þ
2.2.2. Croplands

To estimate NPP in cropped areas, we utilized acreage and

economic yield data from the USDA National Agricultural

Statistics Service (NASS) for the years 1990–1998 (NASS,

1998). Harvest yield (i.e., bushels or tons) were translated

into ANPP and BNPP by using harvest index values (ratio of

biomass harvested to total aboveground biomass) and

resource allocation ratios (ratio of aboveground productivity

to belowground productivity), respectively (e.g. Prince et al.,

2001; Zheng et al., 2003). We used published harvest index

values (Bradford et al., 2005) to calculate ANPP for

cultivated areas following Prince et al. (2001).

2.2.3. Combining grassland and cropland NPP at the

county level

At the county level, we estimated BNPP using county-

specific allocation ratio andmultiplying it by ANPP estimates

(both from remotely sensed estimates and crop statistics). To

derive allocation ratios for each county, we used published

ANPP and BNPP values for crops to determine allocation

ratios for cropped areas (Bradford et al., 2005), and assumed

that uncultivated areas were native vegetation. Cultivated

area was determined from USDA crop harvest statistics

(NASS, 1998). Within each county, we estimated above-

ground NPP (ANPP), belowgroundNPP (BNPP), and overall

NPP (sum of ANPP+BNPP) for both cultivated areas and

native grasslands. Ground-based estimates of whole-county

NPP were calculated as the area-weighted average of NPP

from cultivation and NPP from native grasslands on the

remainder of the county.

2.3. Satellite-derived NPP

For our initial comparison between remotely sensed NPP

and ground-based NPP we used the CASA model, with a

minor modification, to estimate NPP for the years 1990–

1998. The CASA model uses semimonthly measurements of

the normalized difference vegetation index (NDVI) from

NOAA’s Advanced Very High Resolution Radiometer

(AVHRR) to measure FPAR. NDVI has been strongly

correlated with the fraction of absorbed photosynthetically

active radiation (FPAR) in native vegetation (Goward &

Huemmrich, 1992; Goward et al., 1994; Law & Waring,

1994) as well as crops (Daughtry et al., 1983; Gallo et al.,

1985). Monthly values of FPAR were combined with

incoming PAR to estimate monthly APAR. CASA represents

LUE as a single global maximum value that is ‘‘down-

regulated,’’ or reduced during times of unfavorable temper-

ature or water availability. Monthly LUE was determined as:

E ¼ LUETT1T2W ð6Þ

where LUE* is the maximum photosynthetic efficiency, T1

and T2 are reduction factors representing monthly deviations

from site-specific optimal temperature and from 20 -C,
respectively, andW represents monthly reduction in LUE due
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to low soil moisture as determined by a soil water model

(Field et al., 1995; Potter et al., 1993).

We used CASA results described in Hicke et al. (2002)

for 1990–1998. The NDVI data set has a spatial resolution

of 8 km and was processed by Tucker et al. (2001) to

minimize contamination by changes in orbital parameters,

atmospheric conditions, and sensor differences. Solar

radiation and temperature data were taken from the National

Centers for Environmental Prediction reanalysis (Kistler et

al., 2001), and the precipitation data set was produced by the

Global Precipitation Climatology Project (Huffman et al.,

1997). The climate data sets varied temporally in conjunc-

tion with NDVI and were spatially interpolated from 2.5- to
the NDVI pixel locations.

2.4. Structure of cases representing LUE

To characterize discrepancies between CASA and

ground-based data, we modified CASA NPP to represent

LUE* as an area-weighted average of native area, C3

cropland area and C4 cropland area:

LUET ¼ NLUEN þ C3LUE3 þ C4LUE4: ð7Þ

LUEN is the LUE for native vegetation, LUE3 and LUE4

are photosynthetic efficiency values of 0.29 gC MJ�1 for C3

croplands and 0.66 gC MJ�1 for C4 croplands reported by

Lobell et al. (2002), who estimated these values by

comparing time series of CASA NPP and cropland NPP

estimated from USDA NASS yields. N, C3 and C4 were the

area proportions within the county of native vegetation, C3

cropland and C4 cropland, respectively.
Table 1

Models for calculating NPP from NDVI-derived APAR and LUE values with statis

CASA model, the CASA model with statistically determined native LUE, and othe

by county for STATSGO/crop data

Case LUE representation LUE e

Environmental

limitation

Cultivation information Vegeta

Type

CASA Yes Area in C3 and C4 crops Grassl

C3 cro

C4 cro

CASA with new grasslands Yes Only counties with <10%

cultivation

Grassl

C3 cro

C4 cro

Single LUE Yes None All ve

Cropped and grasslands Yes Total area cropped Grassl

Cultiv

C3, crops C4 crops and

grasslands

Yes Area in C3 and C4 crops Grassl

C3 cro

C4 Cr

No downregulation No Area in C3 and C4 crops Grassl

C3 cro

C4 cro

Ground Data

Values reported are coefficients of determination for comparisons between pred

regional NPP.

* These LUE values are based on previous studies rather than estimated in this
This initial analysis included two separate values of LUE

for native vegetation. In the first version, we used the

maximum LUE value of 0.405 gC MJ�1 employed by Hicke

et al. (2002) (‘‘CASA’’ case; Table 1). In the second version

(‘‘CASA new native’’) we determined the native vegetation

LUE by finding the native LUE value that minimized squared

errors between ground-based and CASA NPP for the 158

counties with less than 10% cultivation. For both approaches,

we utilized the values of Lobell et al. for C3 and C4 LUE.

To examine how modifications to LUE from environmen-

tal (temperature and soil moisture) conditions and cropping

practices impact the ability of remotely sensed techniques to

measure county-level NPP, we formulated four cases that

estimate NPP using Eq. (1) with varying methods for

representing LUE (Table 1). To assess the influence of

variations in sensitivity to cropping practices, one case uses a

single value of LUE for the entire county (Table 1: ‘‘single

LUE’’), one case calculates LUE as a spatially weighted

average of the cropped and native areas within the county

(Table 1: ‘‘Cropped and grasslands’’), and one case calculates

LUE as a weighted average of native vegetation area, C3

cropped area and C4 cropped area (Table 1: ‘‘C3 crops, C4

crops and grasslands’’). To examine the importance of

limiting LUE based on environmental conditions, one case

calculates separate LUE as a weighted average of native

vegetation area, C3 cropped area and C4 cropped area but

assumes constant LUE through time (Table 1: ‘‘No down-

regulation’’).

Unlike the two cases mentioned above that utilize

existing LUE estimates (‘‘CASA’’ and ‘‘CASA new native’’

cases), all the LUE values in these final four cases were
tically determined LUE values and standard errors by vegetation type for the

r models with and without environmental LUE limitation and NPP estimates

stimation results R2 NPP (gC m�2yr�1) Total PgC

yr�1

tion Estimate SE Mean Min Max

ands 0.405 NA* 0.506 425.1 210.2 645.6 0.705

ps 0.29 NA*

ps 0.66 NA*

ands 0.246 0.002 0.8031 308.5 127.6 613.6 0.496

ps 0.29 NA*

ps 0.66 NA*

getation 0.301 0.003 0.279 316.7 156.5 482.4 0.531

ands 0.219 0.004 0.671 318.6 113.4 516.3 0.512

ated 0.498 0.007

ands 0.234 0.003 0.842 319.9 121.5 0.705 0.508

ps 0.332 0.009

ops 0.770 0.013

ands 0.150 0.002 0.793 318.7 143.6 682.9 0.512

ps 0.231 0.007

ps 0.548 0.009

318.4 128.7 749.2 0.507

icted and ground-based NPP, mean, min and max county NPP as well as

study, so standard error values are not available.



Fig. 2. Map of NPP estimates from ground-based data for the U.S. Great

Plains.
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determined from the data by minimizing least squared errors

between satellite-derived (based on APAR) and ground-

based NPP. Following Eq. (1), we incorporated ground-

based county NPP (STATSGO/USDA crop harvest) and

NDVI-derived APAR in a linear regression to determine the

LUE as the slope of the fitted line. For the case with a single

LUE value, ground-based NPP is the independent variable,

APAR is the dependent variable, and LUE is the value for

the slope that minimizes squared errors (see Eq. (1)). For the

cases with multiple LUE values, county area in different

vegetation types (Native, C3, C4) are the independent

variables and LUE values are the coefficients that minimize

squared errors according to the equations:

NPP

APAR
¼ N LUEN þ Cult LUEcult ð8Þ

NPP

APAR
¼ N LUEN þ C3 LUE3 þ C4 LUE4 ð9Þ

where cult is the proportion of the county in cultivation and

LUEcult is the calculated light-use efficiency for cultivated

areas. We used the REG procedure with no intercept in SAS

Version 8.0 (SAS, 1999) to perform these regressions with

mean NPP, APAR and land use data from 1990–1998. We

judged the accuracy of each case using coefficients of

determination (R2) and root mean square errors (RMSE).
3. Results

Our county-level estimates of NPP based on measured

grassland productivity and crop harvest statistics averaged

318 gC m�2 yr�1and ranged from 129 to 749 gC m�2 yr�1.

Over the entire U.S. Great Plains region, these values sum to

0.507 PgC yr�1. The strongest spatial pattern is generally

increasing NPP from West to East corresponding to the

patterns of annual precipitation and consistent with previous

studies (Epstein et al., 1997; Lauenroth et al., 1999; Sala et

al., 1988). Our NPP values are similar to those of Prince et al.

(2001), who also used crop statistics to estimate production

for counties in the eastern part of this region (Fig. 2).

The version of CASA utilizing a maximum native LUE of

0.405 gCMJ�1 (‘‘CASA’’ case) predicted higher county NPP

than ground-based NPP from STATSGO data and crop

harvest statistics. Of the 630 counties, 580 had higher county-

level NPP estimates from CASA, whereas only 50 had higher

estimates from ground-based measurements (Fig. 3: CASA).

For the entire region, the difference between CASA and

ground-based NPP estimates is 0.198 PgC yr�1 (Table 1). To

provide an idea of the magnitude of this difference and

therefore the opportunity for improvement in large-scale NPP

estimation, the best estimates of the net carbon sink (the

difference between the net carbon fixed by vegetation (NPP)

and the release of carbon to the atmosphere through processes

such as decomposition) for the conterminous US is 0.3–0.6

PgC yr�1 (Pacala et al., 2001).
Differences between CASA and ground-based estimates

were negatively related to cropping intensity. Although the

CASA model was originally calibrated on NPP measure-

ments from multiple biomes, including native grasslands

(Potter et al., 1993), counties with very low cropping (and

hence a high proportion of native grassland) showed a

consistent positive difference between CASA and ground-

based estimates. Counties with higher levels of cropping, on

the other hand, had lower, and in some counties negative,

differences between CASA and ground-based NPP esti-

mates. The better fit between CASA and ground-based NPP

in heavily cropped counties suggests that published crop-

land LUE values from Lobell et al. (2002) are more accurate

than the LUE used for native vegetation (Table 1).

For the ‘‘CASA new grasslands’’ case, we calculated an

optimum native vegetation LUE estimate of 0.246 gC MJ�1

(Table 1), substantially lower than the LUE value of 0.405

gC MJ�1 that was calibrated from measurements in multiple

ecosystems and originally utilized in CASA (Potter et al.,

1993). This difference accounted for much of the discrep-

ancy between CASA NPP estimates and ground-based NPP

estimates. The case using the derived native grassland LUE

dramatically improved the fit between predicted and

observed NPP estimates (Table 1 and Fig. 3: ‘‘CASA new

grasslands’’).

When we represented LUE as a single value for all

vegetation types, we estimated maximum LUE to be 0.301

gC MJ�1 (Table 1 and Fig. 3: ‘‘Single LUE’’). Representing

county LUE as an area-weighted average of native grassland

and cultivated areas (Table 1 and Fig. 3: ‘‘Cropped and

grasslands’’) produced maximum LUE estimates for native

and cultivated areas of 0.218 and 0.498 gC MJ�1,

respectively. When we represented LUE as a function of

native grassland area, C3 cropland area and C4 cropland area

(Table 1 and Fig. 3: ‘‘C3 crops, C4 crops and grasslands’’),



Fig. 3. Maps of differences between remotely sensed NPP estimates and ground-based NPP estimates for the U.S. Great Plains. Remotely sensed estimates of

NPP (termed ‘‘cases’’ in the text) were generated from: 1) the CASA model (‘‘CASA’’ case), 2) the CASA model with maximum LUE for native vegetation

determined by least squares (‘‘CASA new native’’), 3) a single new LUE value determined by least squares (‘‘Single LUE’’), 4) separate new LUE values for

cropland and native grasslands determined by least squares (‘‘Cropped and grasslands’’), 5) separate new LUE values for C3 crops, C4 crops and native

grasslands determined by least squares (‘‘C3 crops, C4 crops and grasslands’’), and 6) separate new LUE values for C3 crops, C4 crops and native grasslands

determined by least squares but not including environmental limitation of LUE (‘‘No downregulation’’).
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we found maximum LUE values of 0.234, 0.332 and 0.770

gC MJ�1, respectively. As an alternative method, we

computed LUE using only counties with less than 10%

cultivation and found native maximum LUE value of 0.246

gC MJ�1, very close to the native maximum LUE computed

with all counties (0.234 gC MJ�1). Not including environ-

mental limitations yielded LUE estimates of 0.150, 0.231

and 0.548 gC MJ�1 for native areas, C3 crops and C4 crops,

respectively (Table 1 and Fig. 3: ‘‘No downregulation’’).
4. Discussion

We observed a general pattern of highest LUE in C4

crops, lower in C3 crops and lowest LUE in grasslands; this

pattern is also documented in previous studies (Gower et al.,

1999; Ruimy et al., 1994). However, our LUE values, even

those that include limitation due to temperature and soil

moisture conditions, were generally lower than previously

published LUE values determined at small scales. Gower et

al. (1999) reviewed published studies of LUE and observed

a range of 2.85–5.07 gC MJ�1 in C4 crops, 1.02–5.2 gC

MJ�1 in C3 crops and 0.07–2.00 gC MJ�1 in grasslands. In

a similar review, Ruimy et al. (1994) calculated a value of

2.07 gC MJ�1 for cultivated crops and 1.26 gC MJ�1 for
grasslands. In our best NPP algorithm we observed LUE

values of 0.77 gC MJ�1 in C4 crops, 0.33 gC MJ�1 in C3

crops and 0.23 gC MJ�1 in grasslands. The consistent

discrepancy between our results and those from previous

studies may be a consequence of different spatial scales,

temporal durations, and methods of calculating LUE. Many

previous studies have quantified LUE for short time periods

(i.e., growing season or shorter) and at plot scales, whereas

our study calculated annual LUE from NPP and APAR

observations of entire counties, including non-vegetated or

other low-productivity areas. In addition, our LUE values

are based directly on FPAR and PAR and thus may be

influenced by complications and potential biases in the

process of estimating FPAR and PAR. Although seasonal

patterns in FPAR estimates from remote sensing appear to

closely approximate patterns observed on the ground

(Turner et al., 2002), we utilized FPAR estimates based on

biweekly maximum value composites. These composites

may tend to slightly overestimate FPAR and consequently

generate lower LUE estimates. Turner et al. (2003) found

that large-scale PAR estimates (like those used in this study)

can be higher than site-level PAR measurements, also

possibly decreasing our LUE estimates.

Our case that utilized separate maximum LUE estimates

for native, C3 and C4 crops (case ‘‘C3 crops, C4 crops and
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grasslands’’) produced values comparable to the LUE values

from Lobell et al. (2002). The discrepancies between the

results of Lobell et al. (2002) and our results are likely a

consequence of differences in how we obtained our LUE

estimates. First, we calculated LUE for all C3 and C4 crops,

rather than specifically corn and wheat. Wheat is only

modestly productive and may not display LUE representa-

tive of other C3 crops. This may explain why our C3

estimate is slightly higher than the wheat LUE of Lobell et

al. Second, the approach of Lobell et al. (2002) of fitting

LUE values to entire AVHRR pixels may produce slightly

lower LUE estimates for C3 and C4 crops because each

pixel may contain some native vegetation, which has lower

LUE. Third, Lobell et al. utilized multiple NPP estimations

during the year to compute one LUE per county; the values

we used here were their means, which may result in

differences. The differences in methods employed by these

two approaches to estimating LUE makes comparisons

between the approaches valuable for validation. This

consistency in the estimated LUE values for specific land

use types suggests that these values can be useful for

calculating NPP from remotely sensed APAR data.

4.1. Importance of LUE modifications

Representing LUE as a single value yielded low R2

and RMSE values (Fig. 4: ‘‘Single LUE’’). This relatively

poor performance is not surprising considering the
Fig. 4. Scatter plots of remotely sensed county NPP estimates for 6 LUE cases (de

plots each symbol represents a county, numerical values indicate cultivation intensi

1 :1 lines.
substantial differences in observed LUE between native

grasses and crops. Cultivated plants have been selected for

consistent growth (e.g. Boukerrou & Rasmusson, 1990;

Edmeades et al., 1999) and are often irrigated and/or

fertilized, limiting the effect of resource limitation on

cropland LUE and allowing some croplands to have

higher LUE values than native grasslands. Counties with

extremely heavy cropping had much higher NPP values

from ground-based estimates than from remote sensing

estimates for these algorithms, suggesting that the LUE

used in these counties was too low.

Including information about the total area cropped in the

calculation of LUE improved the relationship between

predictions and ground-based observations compared to

the algorithm that treated LUE as a single value (Fig. 4:

‘‘Cropped and grasslands’’). We estimated lower native LUE

and higher cropland LUE compared to the single LUE. This

algorithm improved NPP predictions for counties with low

productivity. Since unproductive counties tend to have low

cropping intensity, these counties were primarily native

grassland, were assigned lower LUE values, and were

estimated to have low NPP values closer to the ground-

based NPP estimates. Likewise, counties with heavy

cultivation were assigned a high LUE value and subse-

quently had higher NPP predictions (compare the points

with the highest NPP in Fig. 4 ‘‘Single LUE’’ with those in

Fig. 4: ‘‘Cropped and grasslands’’), again improving the fit

with ground-based data. Despite this enhancement, NPP
scribed in Fig. 3) versus NPP estimates from ground data. Within the scatter

ty (0=0–10% cultivated, 1=10–20% cultivated, etc.) and solid lines are the
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predictions for many counties with extremely heavy

cultivation were still consistently lower than the ground-

based estimates.

Representing LUE as an area-weighted average of native

area, C3 cropland and C4 cropland produced the best

relationship between NPP predictions and observations (Fig.

4: ‘‘C3 crops, C4 crops and grasslands’’). The LUE value

determined for C4 crops is substantially higher than either

the native or C3 cropland LUE in this algorithm or the

overall cropland LUE in ‘‘Cropped and grasslands’’. Since

many of the extremely productive counties contain high

proportions of corn, a common C4 crop, this high LUE for

C4 crops elevates the predicted NPP for these counties to

levels very close to the ground-based NPP.

Including environmental limitation improved NPP pre-

dictions, but the improvement was minor compared to the

effect of separating cropland into C3 and C4 crops (Fig. 4:

‘‘No downregulation’’). The marginal improvement as a

result of down-regulators may be specific to grassland

ecosystems. Modification of LUE for adverse environmen-

tal conditions may not be especially important for

modeling NPP in grasslands because the satellite observa-

tions (NDVI/FPAR) capture most of the variability.

Shallow rooting, short lifecycles and limited water storage

capacity of grasses may cause tighter coupling between

environmental conditions and light absorption (and thereby

NDVI). Water is the primary limiting resource in grass-

lands (Noy-Meir, 1973), and grassland plants respond

quickly to changes in water availability. Unlike coniferous

trees, which maintain photosynthetic pigments throughout

the winter, or deciduous trees, which use deep-rooted

systems and water reservoirs in their trunks to maintain

photosynthetic activity during brief droughts, grasses are

quickly and dramatically impacted by soil moisture

conditions. If the formation and degradation of photosyn-

thetic pigments in grass leaves is closely linked to actual

photosynthetic activity, then APAR observations will

accurately measure NPP, minimizing the need to separately

model LUE reduction due to environmental conditions.

Alternatively, our perceived lack of importance of envi-

ronmental LUE downregulation may stem from a mis-

match between our annual (as opposed to monthly)

comparisons between APAR and productivity (Montieth,

1972). Comparisons at shorter temporal scales might show

more substantial improvement from environmental LUE

downregulation (Field et al., 1995).

We note that by adjusting NPP derived from remotely

sensed data to ground-based estimates, we may be

compensating for inaccuracies in the NDVI/FPAR rela-

tionship in addition to LUE. The parameters of the linear

NDVI/FPAR relationship were calculated assigning the

tails of NDVI frequency distributions to low and high

values of FPAR (see Los et al., 2000 for details). Thus,

statistically modifying satellite-derived NPP to ground-

based measures hides whether adjustments to FPAR or

LUE are required.
5. Conclusions

Previous studies (e.g., Lobell et al., 2002) have deter-

mined that cultivated areas have LUE values different from

native vegetation and that these differences influence remote

sensing estimates of NPP. We found that the LUE value

currently utilized in CASA produced consistently higher

NPP estimates than our ground-based data in native grass-

lands, and to a lesser extent, in croplands. Calculating a new

estimate for grassland LUE and combining it with C3 and C4

crop LUE values reported by Lobell et al. (2002) reduced the

discrepancies between CASA NPP and ground-based NPP.

In addition to this modification to CASA’s LUE calculations,

we formulated four other representations for LUE, compared

NPP estimates using those representations with ground-

based NPP estimates, and found that including vegetation

information dramatically improved comparisons. Our statis-

tically determined constant LUE value for the entire region

was lower than the LUE used by CASA, accounting for

CASA’s general NPP overestimation in grasslands. Repre-

senting LUE as a mixture of native and cropped area

indicated higher cropped LUE and even lower native LUE.

When we divided LUE into three components (native

vegetation, C3 cropland and C4 cropland), we found

similarly low grassland LUE, intermediate values for C3

cropland LUE and very high C4 cropland LUE, consistent

with previous results. Our best model among those that

derived LUE values for all vegetation types, as indicated by

the highest R2 and lowest RMSE, resulted in similar values

of C3 and C4 LUE as reported by Lobell et al. (2002) despite

differences in methodology.

Comparisons between our algorithms for representing

LUE suggest that grassland and cropland NPP predictions

by remote sensing models are substantially improved by

modifying LUE based on the total area cropped, and are

further improved by including information about the

proportion of C3 and C4 crops within the cropped area.

Currently, many large-scale NPP estimation models that

are based on remote sensing include environmental

limitation, but do not include information about cropping

practices. Based on our findings, we recommend that

future studies examine LUE values for grassland ecosys-

tems and modify LUE based on both cultivation informa-

tion and environmental limitation. The regional dataset of

ground-based estimates of aboveground and belowground

primary production utilized in this study will prove

valuable to future remote sensing and/or large-scale

modeling efforts, and can be acquired by contacting the

first author.
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